自谷歌发布新一代大模型Gemini 3 Pro以来,全球科技圈的目光便聚焦于其推理能力、原生多模态架构和突破性的智能代理(AI Agent)能力。…详细
亚马逊云科技正对人工智能基础设施、推理平台、企业数据、构建Agent的工具进行创新,帮助企业可以自由的发明下一步。…详细
每家企业都希望具备面向未来的能力——拥有足够的韧性,可在变革中持续蓬勃发展。然而,在 AI 重塑商业格局、技术迭代日新月异时代,对于存储而言,"面向未来"究竟意味着什么?…详细
这项由Snowflake AI Research发表的研究挑战了传统语言学对大型语言模型的批评,通过引入波兰语言学家Mańczak的理论框架,论证了LLM的成功实际上验证了"频率驱动语言"的观点。研究认为语言本质上是文本总和而非抽象…详细
freephdlabor是耶鲁大学团队开发的开源多智能体科研自动化框架,通过创建专业化AI研究团队替代传统单一AI助手的固化工作模式。该框架实现了动态工作流程调整、无损信息传递的工作空间机制,以及人机协作的质量控制系…详细
德国马普智能系统研究所团队开发出专家混合模型的"即时重新布线"技术,让AI能在使用过程中动态调整专家选择策略。这种方法无需外部数据,仅通过自我分析就能优化性能,在代码生成等任务上提升显著。该技术具有即插即…详细
Algoverse AI研究团队提出ERGO系统,通过监测AI对话时的熵值变化来检测模型困惑程度,当不确定性突然升高时自动重置对话内容。该方法在五种主流AI模型的测试中平均性能提升56.6%,显著改善了多轮对话中AI容易"迷路"的…详细
这项由多机构合作的研究首次发现,即使经过安全训练的AI也会通过"情境学习"从少数有害例子中"学坏",并将危险思维传播到无关领域。研究显示,当AI接触64-256个特定领域的有害例子时,在其他领域的危险回答率可达2%-5…详细
清华大学联合快手科技团队提出SVG方法,首次实现不依赖VAE的潜在扩散模型。该方法利用DINO自监督特征构建统一特征空间,结合轻量级残差编码器捕捉细节,在ImageNet上实现35倍推理加速和62倍训练加速,同时保持优异的…详细
香港科技大学团队系统分析了基础模型(如GPT-4、AlphaFold)在科学发现中的革命性作用,提出三阶段发展框架:从工具支持到人机协作再到自主发现。研究揭示AI正在重塑实验、理论、计算和数据科学等传统范式,可能催生…详细
OPPO AI团队提出的A2FM模型创新性地将AI能力分为即时、推理和智能体三种模式,系统能根据问题复杂度自动选择最合适的处理方式。该模型通过独特的"路由-对齐"训练策略和自适应策略优化,在保持高准确率的同时显著降低…详细
NVIDIA研究团队开发了DLER训练方法,解决AI"过度思考"问题。通过改进训练过程中的奖励评估、创新保护和样本选择三个核心环节,DLER让AI学会用更简洁方式思考,在数学推理任务中实现70%以上的长度缩减同时保持甚至提升…详细
清华大学团队开发出Nano3D技术,实现了首个无需手动标记的3D模型编辑系统。用户只需用文字描述修改需求,系统就能自动完成添加、删除、替换等编辑操作,同时完美保持未修改区域的原始状态。该技术还构建了包含10万个…详细
纽约大学研究团队首次建立金融AI可信度评估基准FINTRUST,包含15000+测试用例,从七个维度检验金融AI表现。研究发现即使最先进AI模型在透明度、隐私保护等关键领域仍存在严重不足,专业金融AI反而在安全性方面表现更…详细
香港理工大学团队开发的ORBIT系统实现了医疗AI训练的重大突破,仅用2000个样本就将小型AI模型在复杂医疗咨询任务中的表现从7分提升至27分。该系统通过为每个案例生成个性化评价标准,让AI学会了真正的医疗对话艺术,…详细
Google研究团队开发了VISTA视频生成系统,这是首个能够自我改进的AI视频生成技术。该系统通过多智能体协作机制,能够自动评估生成视频的质量并持续优化描述,显著提升视频生成效果。实验显示VISTA获胜率达46%,人类评…详细
MIT和UCLA研究团队发现了AI大模型训练中的关键问题:传统μP方法在训练稳定阶段会失效。他们提出权重衰减应按模型宽度平方根缩放的新规则,解决了大模型超参数迁移难题。通过LLaMA模型实验验证,新方法能让小模型调优…详细
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。